1932

Abstract

Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110220-034007
2023-06-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-110220-034007.html?itemId=/content/journals/10.1146/annurev-bioeng-110220-034007&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cockcroft S. 2021. Mammalian lipids: structure, synthesis and function. Essays Biochem. 65:813–45
    [Google Scholar]
  2. 2.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH et al. 2018. A comprehensive classification system for lipids. Handbook of Biochemistry and Molecular Biology RL Lundblad, FM Macdonald 298–321. Boca Raton, FL: CRC Press. , 5th ed..
    [Google Scholar]
  3. 3.
    Olzmann JA, Carvalho P. 2019. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20:3137–55
    [Google Scholar]
  4. 4.
    Gallion LA, Wang Y, Massaro A, Yao M, Petersen BV, Zhang Q et al. 2022.. “ Fix and click” for assay of sphingolipid signaling in single primary human intestinal epithelial cells. Anal. Chem. 94:31594–600
    [Google Scholar]
  5. 5.
    Hussain G, Anwar H, Rasul A, Imran A, Qasim M et al. 2020. Lipids as biomarkers of brain disorders. Crit. Rev. Food Sci. Nutr. 60:3351–74
    [Google Scholar]
  6. 6.
    Dumas F, Haanappel E. 2017. Lipids in infectious diseases—the case of AIDS and tuberculosis. Biochim. Biophys. Acta Biomembr. 1859:91636–47
    [Google Scholar]
  7. 7.
    Liu Q, Luo Q, Halim A, Song G. 2017. Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett. 401:39–45
    [Google Scholar]
  8. 8.
    Kohno S, Keenan AL, Ntambi JM, Miyazaki M. 2018. Lipidomic insight into cardiovascular diseases. Biochem. Biophys. Res. Commun. 504:3590–95
    [Google Scholar]
  9. 9.
    Perrotti F, Rosa C, Cicalini I, Sacchetta P, Del Boccio P et al. 2016. Advances in lipidomics for cancer biomarkers discovery. Int. J. Mol. Sci. 17:121992
    [Google Scholar]
  10. 10.
    Snaebjornsson MT, Janaki-Raman S, Schulze A. 2020. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31:162–76
    [Google Scholar]
  11. 11.
    Fhu CW, Ali A. 2020. Fatty acid synthase: an emerging target in cancer. Molecules 25:173935
    [Google Scholar]
  12. 12.
    Sun W, Li P, Cai J, Ma J, Zhang X et al. 2022. Lipid metabolism: immune regulation and therapeutic prospectives in systemic lupus erythematosus. Front. Immunol. 13:860586
    [Google Scholar]
  13. 13.
    Bernardi S, Marcuzzi A, Piscianz E, Tommasini A, Fabris B. 2018. The complex interplay between lipids, immune system and interleukins in cardio-metabolic diseases. IJMS 19:124058
    [Google Scholar]
  14. 14.
    Liu Q, Ge W, Wang T, Lan J, Martínez-Jarquín S et al. 2021. High-throughput single-cell mass spectrometry reveals abnormal lipid metabolism in pancreatic ductal adenocarcinoma. Angew. Chem. 133:4624739–47
    [Google Scholar]
  15. 15.
    Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G et al. 2019. Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 8:e49501
    [Google Scholar]
  16. 16.
    Sethi S, Brietzke E. 2017. Recent advances in lipidomics: analytical and clinical perspectives. Prostaglandins Other Lipid Mediat. 128:8–16
    [Google Scholar]
  17. 17.
    Feider CL, Krieger A, DeHoog RJ, Eberlin LS. 2019. Ambient ionization mass spectrometry: recent developments and applications. Anal. Chem. 91:74266–90
    [Google Scholar]
  18. 18.
    Liu R, Pan N, Zhu Y, Yang Z. 2018. T-probe: an integrated microscale device for online in situ single cell analysis and metabolic profiling using mass spectrometry. Anal. Chem. 90:1811078–85
    [Google Scholar]
  19. 19.
    Duncan KD, Fyrestam J, Lanekoff I. 2019. Advances in mass spectrometry based single-cell metabolomics. Analyst 144:3782–93
    [Google Scholar]
  20. 20.
    Huang L, Fang M, Cupp-Sutton KA, Wang Z, Smith K, Wu S. 2021. Spray-capillary-based capillary electrophoresis mass spectrometry for metabolite analysis in single cells. Anal. Chem. 93:104479–87
    [Google Scholar]
  21. 21.
    Van Acker T, Buckle T, Van Malderen SJ, van Willigen DM, van Unen V et al. 2019. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal. Chim. Acta 1074:43–53
    [Google Scholar]
  22. 22.
    Vaysse PM, Heeren RM, Porta T, Balluff B. 2017. Mass spectrometry imaging for clinical research—latest developments, applications, and current limitations. Analyst 142:152690–712
    [Google Scholar]
  23. 23.
    Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G et al. 2022. Sphingolipid control dermal fibroblast heterogeneity. Science 376:6590eabh1623
    [Google Scholar]
  24. 24.
    Yin L, Zhang Z, Liu Y, Gao Y, Gu J. 2019. Recent advances in single-cell analysis by mass spectrometry. Analyst 144:3824–45
    [Google Scholar]
  25. 25.
    Dueñas ME, Essner JJ, Lee YJ. 2017. 3D MALDI mass spectrometry imaging of a single cell: spatial mapping of lipids in the embryonic development of zebrafish. Sci. Rep. 7:114946
    [Google Scholar]
  26. 26.
    Leopold J, Popkova Y, Engel KM, Schiller J. 2018. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8:4173
    [Google Scholar]
  27. 27.
    Marsico TV, de Sousa Sales JN, Ferreira CR, Sudano MJ, Viana JHM et al. 2021. Characteristic MALDI-MS lipid profiles of Gir, Holstein and crossbred (Gir x Holstein) oocytes recovered by ovum pick-up. Livestock Sci. 243:104380
    [Google Scholar]
  28. 28.
    Agüi-Gonzalez P, Jähne S, Phan NT. 2019. SIMS imaging in neurobiology and cell biology. J. Anal. At. Spectrom. 34:71355–68
    [Google Scholar]
  29. 29.
    Schnackenberg LK, Thorn DA, Barnette D, Jones EE. 2022. MALDI imaging mass spectrometry: an emerging tool in neurology. Metab. Brain Dis. 37:1105–21
    [Google Scholar]
  30. 30.
    Niehaus M, Soltwisch J, Belov ME, Dreisewerd K. 2019. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16:9925–31
    [Google Scholar]
  31. 31.
    Martín-Saiz L, Mosteiro L, Solano-Iturri JD, Rueda Y, Martín-Allende J et al. 2021. High-resolution human kidney molecular histology by imaging mass spectrometry of lipids. Anal. Chem. 93:9364–72
    [Google Scholar]
  32. 32.
    Xie W, Gao D, Jin F, Jiang Y, Liu H 2015. Study of phospholipids in single cells using an integrated microfluidic device combined with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 87:147052–59
    [Google Scholar]
  33. 33.
    Yang T, Gao D, Jin F, Jiang Y, Liu H 2016. Surface-printed microdot array chips coupled with matrix-assisted laser desorption/ionization mass spectrometry for high-throughput single-cell patterning and phospholipid analysis: surface-printed microdot array chips coupled with MALDI-TOF MS. Rapid. Commun. Mass. Spectrom. 30:73–79
    [Google Scholar]
  34. 34.
    Neumann EK, Ellis JF, Triplett AE, Rubakhin SS, Sweedler JV. 2019. Lipid analysis of 30 000 individual rodent cerebellar cells using high-resolution mass spectrometry. Anal. Chem. 91:127871–78
    [Google Scholar]
  35. 35.
    Neumann EK, Comi TJ, Rubakhin SS, Sweedler JV. 2019. Lipid heterogeneity between astrocytes and neurons revealed by single-cell MALDI-MS combined with immunocytochemical classification. Angew. Chem. 131:185971–75
    [Google Scholar]
  36. 36.
    Yang B, Patterson NH, Tsui T, Caprioli RM, Norris JL. 2018. Single-cell mass spectrometry reveals changes in lipid and metabolite expression in RAW 264.7 cells upon lipopolysaccharide stimulation. J. Am. Soc. Mass Spectrom. 29:51012–20
    [Google Scholar]
  37. 37.
    Do TD, Ellis JF, Neumann EK, Comi TJ, Tillmaand EG et al. 2018. Optically guided single cell mass spectrometry of rat dorsal root ganglia to profile lipids, peptides and proteins. ChemPhysChem 19:101180–91
    [Google Scholar]
  38. 38.
    Zenobi R. 2013. Single-cell metabolomics: analytical and biological perspectives. Science 342:61631243259
    [Google Scholar]
  39. 39.
    Pan N, Rao W, Kothapalli NR, Liu R, Burgett AW, Yang Z. 2014. The single-probe: a miniaturized multifunctional device for single cell mass spectrometry analysis. Anal. Chem. 86:199376–80
    [Google Scholar]
  40. 40.
    Li Z, Cheng S, Lin Q, Cao W, Yang J et al. 2021. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat. Commun. 12:12869
    [Google Scholar]
  41. 41.
    Chen F, Lin L, Zhang J, He Z, Uchiyama K, Lin JM. 2016. Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal. Chem. 88:84354–60
    [Google Scholar]
  42. 42.
    Zhu Y, Wang W, Yang Z. 2020. Combining mass spectrometry with Paternò-Büchi reaction to determine double-bond positions in lipids at the single-cell level. Anal. Chem. 92:1611380–87
    [Google Scholar]
  43. 43.
    Cahill JF, Riba J, Kertesz V. 2019. Rapid, untargeted chemical profiling of single cells in their native environment. Anal. Chem. 91:96118–26
    [Google Scholar]
  44. 44.
    Pedro L, Rudewicz PJ. 2020. Analysis of live single cells by confocal microscopy and high-resolution mass spectrometry to study drug uptake, metabolism, and drug-induced phospholipidosis. Anal. Chem. 92:2416005–15
    [Google Scholar]
  45. 45.
    Hiyama E, Ali A, Amer S, Harada T, Shimamoto K et al. 2015. Direct lipido-metabolomics of single floating cells for analysis of circulating tumor cells by live single-cell mass spectrometry. Anal. Sci. 31:121215–17
    [Google Scholar]
  46. 46.
    Xu ST, Yang C, Yan XP. 2021. Nanothorn filter-facilitated online cell lysis for rapid and deep intracellular profiling by single-cell mass spectrometry. Anal. Chem. 93:4715677–86
    [Google Scholar]
  47. 47.
    Merrill CB, Basit A, Armirotti A, Jia Y, Gall CM et al. 2017. Patch clamp-assisted single neuron lipidomics. Sci. Rep. 7:15318
    [Google Scholar]
  48. 48.
    Wang R, Zhao H, Zhang X, Zhao X, Song Z, Ouyang J. 2019. Metabolic discrimination of breast cancer subtypes at the single-cell level by multiple microextraction coupled with mass spectrometry. Anal. Chem. 91:53667–74
    [Google Scholar]
  49. 49.
    Zhao Y, Chen Z, Wu Y, Tsukui T, Ma X et al. 2019. Separating and profiling phosphatidylcholines and triglycerides from single cellular lipid droplet by in-tip solvent microextraction mass spectrometry. Anal. Chem. 91:74466–71
    [Google Scholar]
  50. 50.
    Sun M, Yang Z. 2018. Metabolomic studies of live single cancer stem cells using mass spectrometry. Anal. Chem. 91:32384–91
    [Google Scholar]
  51. 51.
    Bergman HM, Lanekoff I. 2017. Profiling and quantifying endogenous molecules in single cells using nano-DESI MS. Analyst 142:193639–47
    [Google Scholar]
  52. 52.
    Xi Y, Tu A, Muddiman DC. 2020. Lipidomic profiling of single mammalian cells by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Anal. Bioanal. Chem. 412:298211–22
    [Google Scholar]
  53. 53.
    Zhang L, Xu T, Zhang J, Wong SCC, Ritchie M et al. 2021. Single cell metabolite detection using inertial microfluidics-assisted ion mobility mass spectrometry. Anal. Chem. 93:3010462–68
    [Google Scholar]
  54. 54.
    Yao H, Zhao H, Zhao X, Pan X, Feng J et al. 2019. Label-free mass cytometry for unveiling cellular metabolic heterogeneity. Anal. Chem. 91:159777–83
    [Google Scholar]
  55. 55.
    Liu A, Zhang H, Ding J, Kou W, Yan F et al. 2020. Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta 212:120769
    [Google Scholar]
  56. 56.
    Popczun NJ, Breuer L, Wucher A, Winograd N. 2017. On the SIMS ionization probability of organic molecules. J. Am. Soc. Mass Spectrom. 28:61182–91
    [Google Scholar]
  57. 57.
    Sheng L, Cai L, Wang J, Li Z, Mo Y et al. 2017. Simultaneous imaging of newly synthesized proteins and lipids in single cell by TOF-SIMS. Int. J. Mass Spectrom. 421:238–44
    [Google Scholar]
  58. 58.
    Hua X, Li HW, Long YT. 2018. Investigation of silver nanoparticle induced lipids changes on a single cell surface by time-of-flight secondary ion mass spectrometry. Anal. Chem. 90:21072–76
    [Google Scholar]
  59. 59.
    Shao C-F, Zhao Y, Wu K, Jia F-F, Luo Q et al. 2018. Correlated secondary ion mass spectrometry-laser scanning confocal microscopy imaging for single cell-principles and applications. Chinese J. Anal. Chem. 46:71005–16
    [Google Scholar]
  60. 60.
    Waki M, Ide Y, Ishizaki I, Nagata Y, Masaki N et al. 2014. Single-cell time-of-flight secondary ion mass spectrometry reveals that human breast cancer stem cells have significantly lower content of palmitoleic acid compared to their counterpart non-stem cancer cells. Biochimie 107:73–77
    [Google Scholar]
  61. 61.
    Milijaš Jotić M, Panevska A, Iacovache I, Kostanjšek R, Mravinec M et al. 2021. Dissecting out the molecular mechanism of insecticidal activity of ostreolysin A6/pleurotolysin B complexes on Western corn rootworm. Toxins 13:455
    [Google Scholar]
  62. 62.
    Do TD, Comi TJ, Dunham SJ, Rubakhin SS, Sweedler JV. 2017. Single cell profiling using ionic liquid matrix-enhanced secondary ion mass spectrometry for neuronal cell type differentiation. Anal. Chem. 89:53078–86
    [Google Scholar]
  63. 63.
    He C, Fong LG, Young SG, Jiang H. 2017. NanoSIMS imaging: an approach for visualizing and quantifying lipids in cells and tissues. J. Investig. Med. 65:3669–72
    [Google Scholar]
  64. 64.
    Zhang C, Zhang D, Cheng JX. 2015. Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 17:415–45
    [Google Scholar]
  65. 65.
    Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN. 2016. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev. 45:82075–89
    [Google Scholar]
  66. 66.
    Gomes da Costa S, Richter A, Schmidt U, Breuninger S, Hollricher O. 2019. Confocal Raman microscopy in life sciences. Morphologie 103:34111–16
    [Google Scholar]
  67. 67.
    Müller M, Zumbusch A. 2007. Coherent anti-Stokes Raman scattering microscopy. ChemPhysChem 8:152156–70
    [Google Scholar]
  68. 68.
    Eberhardt K, Stiebing C, Matthäus C, Schmitt M, Popp J. 2015. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev. Mol. Diagnost. 15:6773–87
    [Google Scholar]
  69. 69.
    Yue S, Cheng JX. 2016. Deciphering single cell metabolism by coherent Raman scattering microscopy. Curr. Opin. Chem. Biol. 33:46–57
    [Google Scholar]
  70. 70.
    Yu Y, Ramachandran PV, Wang MC. 2014. Shedding new light on lipid functions with CARS and SRS microscopy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841:81120–29
    [Google Scholar]
  71. 71.
    Li S, Li Y, Yi R, Liu L, Qu J. 2020. Coherent anti-Stokes Raman scattering microscopy and its applications. Front. Phys. 8:598420
    [Google Scholar]
  72. 72.
    Kang JW, Nguyen FT, Lue N. 2021. Temporal imaging of live cells by high-speed confocal Raman microscopy. Materials 14:133732
    [Google Scholar]
  73. 73.
    Xu Y, Hou X, Zhu Q, Mao S, Ren J et al. 2022. Phenotype identification of HeLa cells knockout CDK6 gene based on label-free Raman imaging. Anal. Chem. 94:258890–98
    [Google Scholar]
  74. 74.
    Surmacki JM, Quiros-Gonzalez I, Bohndiek SE. 2022. Evaluation of label-free confocal Raman microspectroscopy for monitoring oxidative stress in vitro in live human cancer cells. Antioxidants 11:3573
    [Google Scholar]
  75. 75.
    Roman M, Wrobel TP, Panek A, Paluszkiewicz C, Kwiatek WM. 2020. Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865:9158753
    [Google Scholar]
  76. 76.
    Uematsu M, Shimizu T. 2021. Raman microscopy-based quantification of the physical properties of intracellular lipids. Commun. Biol. 4:11176
    [Google Scholar]
  77. 77.
    Beton K, Wysocki P, Brozek-Pluska B. 2022. Mevastatin in colon cancer by spectroscopic and microscopic methods—Raman imaging and AFM studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 270:120726
    [Google Scholar]
  78. 78.
    Feuerer N, Marzi J, Brauchle EM, Carvajal Berrio DA, Billing F et al. 2021. Lipidome profiling with Raman microspectroscopy identifies macrophage response to surface topographies of implant materials. PNAS 118:52e2113694118
    [Google Scholar]
  79. 79.
    Shou J, Oda R, Hu F, Karasawa K, Nuriya M et al. 2021. Super-multiplex imaging of cellular dynamics and heterogeneity by integrated stimulated Raman and fluorescence microscopy. iScience 24:8102832
    [Google Scholar]
  80. 80.
    Lita A, Kuzmin AN, Pliss A, Baev A, Rzhevskii A et al. 2019. Toward single-organelle lipidomics in live cells. Anal. Chem. 91:1711380–87
    [Google Scholar]
  81. 81.
    Wei L, Chen Z, Shi L, Long R, Anzalone AV et al. 2017. Super-multiplex vibrational imaging. Nature 544:7651465–70
    [Google Scholar]
  82. 82.
    Hu F, Zeng C, Long R, Miao Y, Wei L et al. 2018. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods 15:3194–200
    [Google Scholar]
  83. 83.
    Wei L, Hu F, Shen Y, Chen Z, Yu Y et al. 2014. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11:4410–12
    [Google Scholar]
  84. 84.
    Lima C, Muhamadali H, Goodacre R. 2021. The role of Raman spectroscopy within quantitative metabolomics. Annu. Rev. Anal. Chem. 14:323–45
    [Google Scholar]
  85. 85.
    Figueroa B, Fu W, Nguyen T, Shin K, Manifold B et al. 2018. Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source. Biomed. Opt. Express 9:126116–31
    [Google Scholar]
  86. 86.
    Boorman D, Pope I, Masia F, Langbein W, Hood S et al. 2021. Hyperspectral CARS microscopy and quantitative unsupervised analysis of deuterated and non-deuterated fatty acid storage in human cells. J. Chem. Phys. 155:22224202
    [Google Scholar]
  87. 87.
    Nahmad-Rohen A, Regan D, Masia F, McPhee C, Pope I et al. 2020. Quantitative label-free imaging of lipid domains in single bilayers by hyperspectral coherent Raman scattering. Anal. Chem. 92:2114657–66
    [Google Scholar]
  88. 88.
    Masia F, Pope I, Watson P, Langbein W, Borri P. 2018. Bessel-beam hyperspectral CARS microscopy with sparse sampling: enabling high-content high-throughput label-free quantitative chemical imaging. Anal. Chem. 90:63775–85
    [Google Scholar]
  89. 89.
    Karuna A, Masia F, Wiltshire M, Errington R, Borri P, Langbein W. 2019. Label-free volumetric quantitative imaging of the human somatic cell division by hyperspectral coherent anti-Stokes Raman scattering. Anal. Chem. 91:42813–21
    [Google Scholar]
  90. 90.
    Syed A, Smith EA. 2017. Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers. Annu. Rev. Anal. Chem. 10:271–91
    [Google Scholar]
  91. 91.
    Manifold B, Fu D. 2022. Quantitative stimulated Raman scattering microscopy: promises and pitfalls. Annu. Rev. Anal. Chem. 15:269–89
    [Google Scholar]
  92. 92.
    Szafraniec E, Kus E, Wislocka A, Kukla B, Sierka E et al. 2019. Raman spectroscopy-based insight into lipid droplets presence and contents in liver sinusoidal endothelial cells and hepatocytes. J. Biophoton. 12:4e201800290
    [Google Scholar]
  93. 93.
    Denbigh JL, Perez-Guaita D, Vernooij RR, Tobin MJ, Bambery KR et al. 2017. Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques. Sci. Rep. 7:12649
    [Google Scholar]
  94. 94.
    Kochan K, Maslak E, Krafft C, Kostogrys R, Chlopicki S, Baranska M. 2015. Raman spectroscopy analysis of lipid droplets content, distribution and saturation level in non-alcoholic fatty liver disease in mice. J. Biophoton 8:7597–609
    [Google Scholar]
  95. 95.
    Tott S, Grosicki M, Glowacz J, Mohaissen T, Wojnar-Lason K et al. 2021. Raman imaging-based phenotyping of murine primary endothelial cells to identify disease-associated biochemical alterations. Biochim. Biophys. Acta Mol. Basis Dis. 1867:9166180
    [Google Scholar]
  96. 96.
    Janik-Olchawa N, Drozdz A, Wajda A, Sitarz M, Planeta K et al. 2022. Biochemical changes of macrophages and U87MG cells occurring as a result of the exposure to iron oxide nanoparticles detected with the Raman microspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 278:121337
    [Google Scholar]
  97. 97.
    Sitarz K, Czamara K, Bialecka J, Klimek M, Szostek S, Kaczor A. 2021. Dual switch in lipid metabolism in cervical epithelial cells during dysplasia development observed using Raman microscopy and molecular methods. Cancers 13:91997
    [Google Scholar]
  98. 98.
    Pliss A, Kuzmin AN, Prasad PN, Mahajan SD. 2022. Mitochondrial dysfunction: a prelude to neuropathogenesis of SARS-CoV-2. ACS Chem. Neurosci. 13:3308–12
    [Google Scholar]
  99. 99.
    Notarstefano V, Pisani M, Bramucci M, Quassinti L, Maggi F et al. 2022. A vibrational in vitro approach to evaluate the potential of monoolein nanoparticles as isofuranodiene carrier in MDA-MB 231 breast cancer cell line: new insights from infrared and Raman microspectroscopies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 269:120735
    [Google Scholar]
  100. 100.
    Bakar J, Michael-Jubeli R, Tfaili S, Assi A, Baillet-Guffroy A, Tfayli A. 2021. Biomolecular modifications during keratinocyte differentiation: Raman spectroscopy and chromatographic techniques. Analyst 146:92965–73
    [Google Scholar]
  101. 101.
    Wenzel T, Carvajal Berrio DA, Reisenauer C, Layland S, Koch A et al. 2020. Trans-mucosal efficacy of non-thermal plasma treatment on cervical cancer tissue and human cervix uteri by a next generation electrosurgical argon plasma device. Cancers 12:2267
    [Google Scholar]
  102. 102.
    Bik E, Orleanska J, Mateuszuk L, Baranska M, Majzner K, Chlopicki S. 2022. Raman and fluorescence imaging of phospholipidosis induced by cationic amphiphilic drugs in endothelial cells. Biochim. Biophys. Acta Mol. Cell Res. 1869:3119186
    [Google Scholar]
  103. 103.
    Pacia MZ, Chorazy N, Sternak M, Fels B, Pacia M et al. 2022. Rac1 regulates lipid droplets formation, nanomechanical, and nanostructural changes induced by TNF in vascular endothelium in the isolated murine aorta. Cell. Mol. Life Sci. 79:6317
    [Google Scholar]
  104. 104.
    Lin J, Graziotto ME, Lay PA, New EJ. 2021. A bimodal fluorescence-Raman probe for cellular imaging. Cells 10:71699
    [Google Scholar]
  105. 105.
    Bader CA, Shandala T, Carter EA, Ivask A, Guinan T et al. 2016. A molecular probe for the detection of polar lipids in live cells. PLOS ONE 11:8e0161557
    [Google Scholar]
  106. 106.
    Chen Z, Paley DW, Wei L, Weisman AL, Friesner RA et al. 2014. Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette. J. Am. Chem. Soc. 136:228027–33
    [Google Scholar]
  107. 107.
    Gala de Pablo J, Chisholm DR, Ambler CA, Peyman SA, Whiting A, Evans SD 2020. Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy. Analyst 145:175878–88
    [Google Scholar]
  108. 108.
    Watson MD, Lee JC. 2023. Genetically encoded aryl alkyne for Raman spectral imaging of intracellular α-synuclein fibrils. J. Mol. Biol. 435:1167716 https://doi.org/10.1016/j.jmb.2022.167716
    [Google Scholar]
  109. 109.
    Yamakoshi H, Dodo K, Palonpon A, Ando J, Fujita K et al. 2012. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J. Am. Chem. Soc. 134:5120681–89
    [Google Scholar]
  110. 110.
    Samuel AZ, Miyaoka R, Ando M, Gaebler A, Thiele C, Takeyama H. 2020. Molecular profiling of lipid droplets inside HuH7 cells with Raman micro-spectroscopy. Commun. Biol. 3:1372
    [Google Scholar]
  111. 111.
    Matuszyk E, Adamczyk A, Radwan B, Pieczara A, Szcześniak P et al. 2021. Multiplex Raman imaging of organelles in endothelial cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 255:119658
    [Google Scholar]
  112. 112.
    Hekmatara M, Heidari Baladehi M, Ji Y, Xu J 2021. D2O-probed Raman microspectroscopy distinguishes the metabolic dynamics of macromolecules in organellar anticancer drug response. Anal. Chem. 93:42125–34
    [Google Scholar]
  113. 113.
    Matthäus C, Krafft C, Dietzek B, Brehm BR, Lorkowski S, Popp J. 2012. Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling. Anal. Chem. 84:208549–56
    [Google Scholar]
  114. 114.
    Stiebing C, Schmölz L, Wallert M, Matthäus C, Lorkowski S, Popp J. 2017. Raman imaging of macrophages incubated with triglyceride-enriched oxLDL visualizes translocation of lipids between endocytic vesicles and lipid droplets. J. Lipid Res. 58:5876–83
    [Google Scholar]
  115. 115.
    Stiebing C, Matthäus C, Krafft C, Keller AA, Weber K et al. 2014. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy. Anal. Bioanal. Chem. 406:277037–46
    [Google Scholar]
  116. 116.
    Ranneva SV, Okotrub KA, Amstislavsky SY, Surovtsev NV. 2020. Deuterated stearic acid uptake and accumulation in lipid droplets of cat oocytes. Arch. Biochem. Biophys. 692:108532
    [Google Scholar]
  117. 117.
    Egoshi S, Dodo K, Ohgane K, Sodeoka M. 2021. Deuteration of terminal alkynes realizes simultaneous live cell Raman imaging of similar alkyne-tagged biomolecules. Org. Biomol. Chem. 19:388232–36
    [Google Scholar]
  118. 118.
    Hill AH, Munger E, Francis AT, Manifold B, Fu D. 2019. Frequency modulation stimulated Raman scattering microscopy through polarization encoding. J. Phys. Chem. B 123:408397–404
    [Google Scholar]
  119. 119.
    Tipping WJ, Wilson LT, An C, Leventi AA, Wark AW et al. 2022. Stimulated Raman scattering microscopy with spectral phasor analysis: applications in assessing drug-cell interactions. Chem. Sci. 13:123468–76
    [Google Scholar]
  120. 120.
    Hislop EW, Tipping WJ, Faulds K, Graham D. 2022. Label-free imaging of lipid droplets in prostate cells using stimulated Raman scattering microscopy and multivariate analysis. Anal. Chem. 94:258899–908
    [Google Scholar]
  121. 121.
    Stiebing C, Meyer T, Rimke I, Matthäus C, Schmitt M et al. 2017. Real-time Raman and SRS imaging of living human macrophages reveals cell-to-cell heterogeneity and dynamics of lipid uptake. J. Biophoton 10:91217–26
    [Google Scholar]
  122. 122.
    Du J, Su Y, Qian C, Yuan D, Miao K et al. 2020. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. Nat. Commun. 11:14830
    [Google Scholar]
  123. 123.
    Oh S, Lee C, Yang W, Li A, Mukherjee A et al. 2022. Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy. PNAS 119:17e2117938119
    [Google Scholar]
  124. 124.
    Ranjan R, Ferrara MA, Filograna A, Valente C, Sirleto L. 2019. Femtosecond stimulated Raman microscopy: home-built realization and a case study of biological imaging. J. Inst. 14:P09008
    [Google Scholar]
  125. 125.
    Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y et al. 2017. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20:3303–14.e5
    [Google Scholar]
  126. 126.
    Shi L, Klimas A, Gallagher B, Cheng Z, Fu F et al. 2022. Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy. Adv. Sci. 9:202200315
    [Google Scholar]
  127. 127.
    Fung AA, Hoang K, Zha H, Chen D, Zhang W, Shi L. 2022. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Front. Oncol. 12:858017
    [Google Scholar]
  128. 128.
    Adams WR, Gautam R, Locke A, Masson LE, Borrachero-Conejo AI et al. 2022. Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering. Biophys. J. 121:81525–40
    [Google Scholar]
  129. 129.
    Hong S, Chen T, Zhu Y, Li A, Huang Y, Chen X. 2014. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew. Chem. Int. Ed. 53:235827–31
    [Google Scholar]
  130. 130.
    Du J, Wei L. 2022. Multicolor photoactivatable Raman probes for subcellular imaging and tracking by cyclopropenone caging. J. Am. Chem. Soc. 144:2777–86
    [Google Scholar]
  131. 131.
    Vukosavljevic B, Hittinger M, Hachmeister H, Pilger C, Murgia X et al. 2019. Vibrational spectroscopic imaging and live cell video microscopy for studying differentiation of primary human alveolar epithelial cells. J. Biophoton. 12:e201800052
    [Google Scholar]
  132. 132.
    Zhang C, Boppart SA. 2020. Dynamic signatures of lipid droplets as new markers to quantify cellular metabolic changes. Anal. Chem. 92:2415943–52
    [Google Scholar]
  133. 133.
    Levchenko SM, Kuzmin AN, Pliss A, Ohulchanskyy TY, Prasad PN, Qu J. 2019. Cellular transformations in near-infrared light-induced apoptosis in cancer cells revealed by label-free CARS imaging. J. Biophoton. 12:e201900179
    [Google Scholar]
  134. 134.
    Levchenko SM, Peng X, Liu L, Qu J. 2019. The impact of cell fixation on coherent anti-stokes Raman scattering signal intensity in neuronal and glial cell lines. J. Biophoton. 12:e201800203
    [Google Scholar]
  135. 135.
    Guerenne-Del Ben T, Couderc V, Duponchel L, Sol V, Leproux P, Petit JM 2020. Multiplex coherent anti-Stokes Raman scattering microspectroscopy detection of lipid droplets in cancer cells expressing TrkB. Sci. Rep. 10:16749
    [Google Scholar]
  136. 136.
    Mizuguchi T, Momotake A, Hishida M, Yasui M, Yamamoto Y et al. 2020. Multimodal multiphoton imaging of the lipid bilayer by dye-based sum-frequency generation and coherent anti-Stokes Raman scattering. Anal. Chem. 92:85656–60
    [Google Scholar]
  137. 137.
    Takei Y, Hirai R, Fukuda A, Miyazaki S, Shimada R et al. 2021. Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. J. Chem. Phys. 155:12125102
    [Google Scholar]
  138. 138.
    Mukherjee P, Aksamitiene E, Alex A, Shi J, Bera K et al. 2022. Differential uptake of antisense oligonucleotides in mouse hepatocytes and macrophages revealed by simultaneous two-photon excited fluorescence and coherent Raman imaging. Nucleic Acid Ther 32:3163–76
    [Google Scholar]
  139. 139.
    Matuszyk E, Sierka E, Rodewald M, Bae H, Meyer T et al. 2020. Differential response of liver sinusoidal endothelial cells and hepatocytes to oleic and palmitic acid revealed by Raman and CARS imaging. Biochim. Biophys. Acta Mol. Basis Dis. 1866:6165763
    [Google Scholar]
  140. 140.
    Borek-Dorosz A, Grosicki M, Dybas J, Matuszyk E, Rodewald M et al. 2022. Identification of inflammatory markers in eosinophilic cells of the immune system: Fluorescence, Raman and CARS imaging can recognize markers but differently. Cell. Mol. Life Sci. 79:152
    [Google Scholar]
  141. 141.
    Xu D, Liang S, Xu L, Bourdakos KN, Johnson P et al. 2021. Widely-tunable synchronisation-free picosecond laser source for multimodal CARS, SHG, and two-photon microscopy. Biomed. Opt. Express 12:21010–19
    [Google Scholar]
  142. 142.
    Di Napoli C, Pope I, Masia F, Langbein W, Watson P, Borri P. 2016. Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral CARS microscopy in living human adipose-derived stem cells. Anal. Chem. 88:73677–85
    [Google Scholar]
  143. 143.
    Camp CH Jr., Lee YJ, Heddleston JM, Hartshorn CM, Walker ARH et al. 2014. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photon. 8:8627–34
    [Google Scholar]
  144. 144.
    Lakowicz JR. 2007. Principles of Fluorescence Spectroscopy New York: Springer US. , 3rd ed..
  145. 145.
    de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML et al. 2021. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol. Metab. 47:101168
    [Google Scholar]
  146. 146.
    Liu C, Zhang D, Ye S, Chen T, Liu R. 2022. D-π-A structure fluorophore: NIR emission, response to viscosity, detection cyanide and bioimaging of lipid droplets. Spectrochim. Acta A Mol. Biomol. Spectrosc. 267:120593
    [Google Scholar]
  147. 147.
    Niu J, Liu Y, Wang W, Lin W. 2019. Novel two-photon fluorescent probe with high fluorescence quantum yields for tracking lipid droplets in biological systems. Spectrochim. Acta A Mol. Biomol. Spectrosc. 216:35–44
    [Google Scholar]
  148. 148.
    Ramosaj M, Madsen S, Maillard V, Scandella V, Sudria-Lopez D et al. 2021. Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation. Nat. Commun. 12:7362
    [Google Scholar]
  149. 149.
    Danylchuk DI, Jouard PH, Klymchenko AS. 2021. Targeted solvatochromic fluorescent probes for imaging lipid order in organelles under oxidative and mechanical stress. J. Am. Chem. Soc. 143:2912–24
    [Google Scholar]
  150. 150.
    Wang J, Fang N, Xiong J, Du Y, Cao Y, Ji WK. 2021. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions. Nat. Commun. 12:1252
    [Google Scholar]
  151. 151.
    Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E et al. 2020. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16:6644–52
    [Google Scholar]
  152. 152.
    Lee HW, Lee IJ, Lee SJ, Kim YR, Kim HM. 2022. Highly sensitive two-photon lipid droplet tracker for in vivo screening of drug induced liver injury. ACS Sens. 7:41027–35
    [Google Scholar]
  153. 153.
    Xue H, Ge E, Ge W, Li J, Tian M. 2022. Single fluorescent probe for zero-crosstalk discrimination of lipid droplets and the endoplasmic reticulum based on reversible cyclization reaction. Anal. Chem. 94:259158–65
    [Google Scholar]
  154. 154.
    Wu CJ, Li XY, Zhu T, Zhao M, Song Z et al. 2022. Exploiting the twisted intramolecular charge transfer effect to construct a wash-free solvatochromic fluorescent lipid droplet probe for fatty liver disease diagnosis. Anal. Chem. 94:93881–87
    [Google Scholar]
  155. 155.
    Lai C, Zhao Y, Liang Y, Zou X, Lin W. 2022. BF2 group chelated AIE fluorescent probe for polarity mapping of lipid droplets in cells and in vivo. Spectrochim. Acta A Mol. Biomol. Spectrosc. 268:120637
    [Google Scholar]
  156. 156.
    Jung Y, Jin JH, Kim Y, Oh JH, Moon H et al. 2022. Development of a fluorescent nanoprobe based on an amphiphilic single-benzene-based fluorophore for lipid droplet detection and its practical applications. Org. Biomol. Chem. 20:275423–33
    [Google Scholar]
  157. 157.
    Li X, Yang Z, Bian J, Fu M, Zhang Y et al. 2022. Fluorescent probes based on multifunctional encapsulated perylene diimide dyes for imaging of lipid droplets in live cells. Analyst 147:71410–16
    [Google Scholar]
  158. 158.
    Öberg E, Appelqvist H, Nilsson KPR. 2017. Non-fused phospholes as fluorescent probes for imaging of lipid droplets in living cells. Front. Chem. 5:28
    [Google Scholar]
  159. 159.
    Huang B, Bates M, Zhuang X. 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  160. 160.
    Yin J, Peng M, Lin W. 2019. Two-photon fluorescence imaging of lipid drops polarity toward cancer diagnosis in living cells and tissue. Sens. Actuators B Chem. 288:251–58
    [Google Scholar]
  161. 161.
    Kreder R, Pyrshev KA, Darwich Z, Kucherak OA, Mély Y, Klymchenko AS. 2015. Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells. ACS Chem. Biol. 10:61435–42
    [Google Scholar]
  162. 162.
    Yamaguchi E, Wang C, Fukazawa A, Taki M, Sato Y et al. 2015. Environment-sensitive fluorescent probe: a benzophosphole oxide with an electron-donating substituent. Angew. Chem. Int. Ed. 54:154539–43
    [Google Scholar]
  163. 163.
    Owen DM, Williamson DJ, Magenau A, Gaus K. 2012. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3:11256
    [Google Scholar]
  164. 164.
    Sohn M, Toth DJ, Balla T. 2019. Monitoring non-vesicular transport of phosphatidylserine and phosphatidylinositol 4-phosphate in intact cells by BRET analysis. Intracellular Lipid Transport: Methods and Protocols G Drin 13–22. New York: Springer
    [Google Scholar]
  165. 165.
    Tóth JT, Gulyás G, Hunyady L, Várnai P. 2019. Development of nonspecific BRET-based biosensors to monitor plasma membrane inositol lipids in living cells. Intracellular Lipid Transport: Methods and Protocols G Drin 23–34. New York: Springer
    [Google Scholar]
  166. 166.
    Wilhelm LP, Voilquin L, Kobayashi T, Tomasetto C, Alpy F. 2019. Intracellular and plasma membrane cholesterol labeling and quantification using filipin and GFP-D4. Intracellular Lipid Transport: Methods and Protocols G Drin 137–52. New York: Springer
    [Google Scholar]
  167. 167.
    Chandra A, Datta A. 2022. A peptide-based fluorescent sensor for anionic phospholipids. ACS Omega 7:1210347–54
    [Google Scholar]
  168. 168.
    Moser von Filseck J, Čopič A, Delfosse V, Vanni S, Jackson CL et al. 2015. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349:6246432–36
    [Google Scholar]
  169. 169.
    Chung J, Torta F, Masai K, Lucast L, Czapla H et al. 2015. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:6246428–32
    [Google Scholar]
  170. 170.
    Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV et al. 2018. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J. Cell Biol. 217:51797–813
    [Google Scholar]
  171. 171.
    Capasso S, D'Angelo G 2019. Imaging lipid metabolism at the Golgi complex. Intracellular Lipid Transport: Methods and Protocols G Drin 47–56. New York: Springer
    [Google Scholar]
  172. 172.
    Hammond GRV, Schiavo G, Irvine RF. 2009. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P2. Biochem. J. 422:123–35
    [Google Scholar]
  173. 173.
    Zhang J, Nie J, Sun H, Li J, Andersen JP, Shi Y. 2022. De novo labeling and trafficking of individual lipid species in live cells. Mol. Metab. 61:101511
    [Google Scholar]
  174. 174.
    Feng S, Harayama T, Montessuit S, David FP, Winssinger N et al. 2018. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function. eLife 7:e34555
    [Google Scholar]
  175. 175.
    Kinoshita M, Suzuki KGN, Matsumori N, Takada M, Ano H et al. 2017. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J. Cell Biol. 216:41183–204
    [Google Scholar]
  176. 176.
    Brameshuber M, Weghuber J, Ruprecht V, Gombos I, Horváth I et al. 2010. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285:5341765–71
    [Google Scholar]
  177. 177.
    Haberkant P, Stein F, Höglinger D, Gerl MJ, Brügger B et al. 2016. Bifunctional sphingosine for cell-based analysis of protein-sphingolipid interactions. ACS Chem. Biol. 11:1222–30
    [Google Scholar]
  178. 178.
    Höglinger D, Nadler A, Haberkant P, Kirkpatrick J, Schifferer M et al. 2017. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. PNAS 114:71566–71
    [Google Scholar]
  179. 179.
    Gaebler A, Penno A, Kuerschner L, Thiele C. 2016. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J. Lipid Res. 57:101934–47
    [Google Scholar]
  180. 180.
    Bumpus TW, Liang D, Baskin JM. 2020. IMPACT: Imaging phospholipase d activity with clickable alcohols via transphosphatidylation. Methods in Enzymology, Vol. 641 Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Chemical, Optical and Bioorthogonal Methods DM Chenoweth 75–94. Amsterdam: Elsevier
    [Google Scholar]
  181. 181.
    Liang D, Wu K, Tei R, Bumpus TW, Ye J, Baskin JM. 2019. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity. PNAS 116:3115453–62
    [Google Scholar]
  182. 182.
    Bumpus TW, Baskin JM. 2017. Clickable substrate mimics enable imaging of phospholipase D activity. ACS Cent. Sci. 3:101070–77
    [Google Scholar]
  183. 183.
    Gaebler A, Milan R, Straub L, Hoelper D, Kuerschner L, Thiele C. 2013. Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assays. J. Lipid Res. 54:82282–90
    [Google Scholar]
  184. 184.
    Thiele C, Papan C, Hoelper D, Kusserow K, Gaebler A et al. 2012. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 7:122004–11
    [Google Scholar]
  185. 185.
    Petersen BV, Gallion L, Allbritton NL. 2020. Silicon photomultipliers as a low-cost fluorescence detector for capillary electrophoresis. Anal. Chem. 92:2013683–87
    [Google Scholar]
  186. 186.
    Dickinson AJ, Hunsucker SA, Armistead PM, Allbritton NL. 2014. Single-cell sphingosine kinase activity measurements in primary leukemia. Anal. Bioanal. Chem. 406:277027–36
    [Google Scholar]
  187. 187.
    Proctor A, Sims CE, Allbritton NL. 2017. Chemical fixation to arrest phospholipid signaling for chemical cytometry. J. Chromatogr. A 1523:97–106
    [Google Scholar]
  188. 188.
    Essaka DC, Prendergast J, Keithley RB, Palcic MM, Hindsgaul O et al. 2012. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons. Anal. Chem. 84:62799–804
    [Google Scholar]
  189. 189.
    Ciura K, Dziomba S, Nowakowska J, Markuszewski MJ. 2017. Thin layer chromatography in drug discovery process. J. Chromatogr. A 1520:9–22
    [Google Scholar]
  190. 190.
    Whitmore CD, Olsson U, Larsson EA, Hindsgaul O, Palcic MM, Dovichi NJ. 2007. Yoctomole analysis of ganglioside metabolism in PC12 cellular homogenates. Electrophoresis 28:173100–4
    [Google Scholar]
  191. 191.
    Dickinson AJ, Meyer M, Pawlak EA, Gomez S, Jaspers I, Allbritton NL. 2015. Analysis of sphingosine kinase activity in single natural killer cells from peripheral blood. Integr. Biol. 7:4392–401
    [Google Scholar]
  192. 192.
    Keithley RB, Rosenthal AS, Essaka DC, Tanaka H, Yoshimura Y et al. 2013. Capillary electrophoresis with three-color fluorescence detection for the analysis of glycosphingolipid metabolism. Analyst 138:1164–70
    [Google Scholar]
  193. 193.
    Proctor A, Allbritton NL. 2019.. “ Fix and assay”: separating in-cellulo sphingolipid reactions from analytical assay in time and space using an aldehyde-based fixative. Analyst 144:3961–71
    [Google Scholar]
  194. 194.
    Boardman A, Chang T, Folch A, Dovichi NJ. 2010. Indium−tin oxide coated microfabricated device for the injection of a single cell into a fused silica capillary for chemical cytometry. Anal. Chem. 82:239959–61
    [Google Scholar]
  195. 195.
    Wang Y, Yao M, Sims CE, Allbritton NL. 2022. Monolithic silica microbands enable thin-layer chromatography analysis of single cells. Anal. Chem. 94:3913489–97
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110220-034007
Loading
/content/journals/10.1146/annurev-bioeng-110220-034007
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error